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Sara Colomer-Lahiguerae, G€ulcan Ba#gçivanf, Eva Papeg, Amanda Druryh, Cherith Semplei,
Karin B. Dieperinkj, Constantina Papadopoulouk

a Reader, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, Scotland, UK
b Clinical Nurse Specialist, Department of Head and Neck and ENT Cancer Surgery of the Portuguese Institute of Oncology of Francisco Gentil, Lisbon, Portugal
c Senior Lecturer, School of Nursing and Midwifery, University of Galway, Galway, Ireland
d Associate Professor, Catalan Institute of Oncology and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
e Senior Nurse Scientist, Institute of Higher Education and Research in Healthcare (IUFRS), Faculty of Biology and Medicine, University of Lausanne, and Lausanne
University Hospital, Lausanne, Switzerland
f Associate Professor, School of Nursing, Koc University, Istanbul, Turkey
g Clinical Nurse Specialist, Department of Gastrointestinal Surgery, Cancer Center, Ghent University Hospital, Ghent, Belgium
h Associate Professor, School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
i Reader, School of Nursing, Institute of Nursing and Health Research, Ulster University, Belfast, UK
j Professor, Department of Clinical Research, University of Southern Denmark, Department of Oncology, Odense University Hospital, Odense, Denmark
k Reader, School of Health and Life Sciences, University of the West of Scotland, South Lanarkshire, Scotland, UK

A R T I C L E I N F O A B S T R A C T

Objectives: To provide an overview of three consecutive stages involved in the processing of quantitative
research data (ie, data management, analysis, and interpretation) with the aid of practical examples to foster
enhanced understanding.
Data Sources: Published scientific articles, research textbooks, and expert advice were used.
Conclusion: Typically, a considerable amount of numerical research data is collected that require analysis. On
entry into a data set, data must be carefully checked for errors and missing values, and then variables must
be defined and coded as part of data management. Quantitative data analysis involves the use of statistics.
Descriptive statistics help summarize the variables in a data set to show what is typical for a sample. Meas-
ures of central tendency (ie, mean, median, mode), measures of spread (standard deviation), and parameter
estimation measures (confidence intervals) may be calculated. Inferential statistics aid in testing hypotheses
about whether or not a hypothesized effect, relationship, or difference is likely true. Inferential statistical
tests produce a value for probability, the P value. The P value informs about whether an effect, relationship,
or difference might exist in reality. Crucially, it must be accompanied by a measure of magnitude (effect size)
to help interpret how small or large this effect, relationship, or difference is. Effect sizes provide key informa-
tion for clinical decision-making in health care.
Implications for Nursing Practice: Developing capacity in the management, analysis, and interpretation of
quantitative research data can have a multifaceted impact in enhancing nurses’ confidence in understanding,
evaluating, and applying quantitative evidence in cancer nursing practice.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
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Introduction

Quantitative research assumes that the constructs under study
can be measured. As such, quantitative research aims to process

numerical data (or numbers) to identify trends and relationships and
to verify the measurements made to answer questions like who, how
much, what, where, when, how many, and how.1,2 In this context,
the processing of numerical data is a series of steps taken to help
researchers and consumers of research (eg, health professionals,
patients, policy makers, and the public) make meaning from the data.
The process itself can involve a lot of negotiation, mainly because
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what once were random numbers start to become more concrete, yet
its meaning must be explored and explained carefully to establish
the degree to which the evidence answers the research question(s).

This article aims to provide an overview of three consecutive
stages involved in the processing of quantitative research data (ie,
data management, analysis, and interpretation) with the aid of prac-
tical examples to foster enhanced understanding.

Data Management

Typically, a considerable amount of numerical data is collected
that require analysis. Also, typically, the data can be disorganized and
made up of separate bits of information. Imagine that a group of
researchers have collected a set of numerical data as part of a quanti-
tative study. At a very early stage, the numbers will probably look
like the screenshot in Fig 1. What information do they convey? When
numbers look this way, their meaning is unclear.

Crucially, the starting point is to carefully prepare a data set ready for
analysis. Numbers (also known as raw data) must be put in a form that
makes them suitable for analysis. This is called data management; its
purpose is to make the data analyzable. At the core of quantitative data
management is the construction and definition of variables. A variable
is defined as anything that can be measured that varies. In health care,
variables may represent things that vary from one person to the next
(eg, country of origin, type of cancer) and even within the same person
(eg, temperature, neutrophil counts). Practically, variables will contain
the quantitative data to be statistically analyzed. Much of what happens
to variables during data analysis depends on their type. One fundamen-
tal classification is based on the values and units of measurement
attached to variables. The algorithm in Fig 2 can quickly help you iden-
tify a variable as dichotomous, categorical, or metric.

Dichotomous variables only have two distinct values involved;
this is why they are also known as binary. Categorical variables are
variables that have three or more values; they can be either nominal
or ordinal. In nominal variables the order of the values does not mat-
ter. For instance, the variable country of origin might comprise a list
of countries; however, which country goes first, which second, and
so on does not matter. If the order does matter and there is no fixed
unit of measurement, then the variable becomes ordinal. Consider
here a numerical scale from 0 to 10 that indicates the level of pain.
Pain graded as 8 will always mean more severe pain compared to a
value of 3; there is thus an ascending order of pain severity that is
fixed from 0 to 10. Pain severity has no attached unit of measurement
on this scale. Where the order of the values matters and there is a

fixed unit of measurement involved, then we talk about metric varia-
bles. Weight, blood pressure, and time are all metric variables
because the order of values is important, and there is a fixed unit of
measurement attached to these values. Blood pressure might be mea-
sured in mm Hg, and a value of 130 mm Hg will always mean higher
systolic blood pressure than 120 mm Hg.

Codes must also be attached to quantitative variables as necessary
to help with the interpretation of results. This is particularly true for
dichotomous and categorical variables. For instance, as part of coding,
values of 1 and 2 in the variable gender would be assigned a man and
woman descriptor, respectively. In many cases, a code book is cre-
ated. Subsequently, the data will be entered in a file (Fig 1), using a
data processing software (eg, Microsoft Excel) and “cleaned.” Data
are thoroughly checked for inconsistencies or errors in data entry
(eg, due to mistyping) or for missing values (see Fig 1). Missing values
can be assigned a code in the data set (eg, 999) for ease of interpreta-
tion. The goal is to minimize the risk for inconsistencies, errors, and
missing values to have a major impact on the final results. Data clean-
ing, as an essential aspect of quality assurance and a determinant of
validity, should not be an exception. In quantitative study protocols,
it is advised inclusion of a data-cleaning plan.4

Running descriptive statistics (see relevant section further below)
can help spot most errors. Some of the most common errors include:

! Inconsistent data entry or misspelling. For example, data for gen-
der might be entered as “F,” “f,” “fem,” “female,” or “1.” These can
cause problem with coding and interpretation. Frequency tables
allow auditing all the text that was typed in originally.

! Out-of-range values. For example, a respondent’s pain score on a
0-10 visual analogue scale might have been mistyped as 13
instead of 3. Without correction of this error, data analysis could
lead to inflated pain scores for the sample and misleading conclu-
sions. A frequency table would again be valuable in identifying
out-of-range values.

Relatedly, any missing values will also require special consider-
ation. Missing values simply mean that for one or more variables or
for a number of study participants data are not available. It may well
be because study participants skipped a question or questionnaire,
missed a measurement point, or because they dropped out of the
study completely. A large number of missing values creates problems
with the analysis because it leads to an imbalance in the data set,
which might interfere with the validity of the data and the accuracy
of the conclusions drawn from the analysis. Although concrete
benchmarks regarding what percentage of missing values is

FIG 1. Snapshot of a data set with raw quantitative data collected as part of a fictitious study among patients with ovarian cancer receiving one of two treatments (A or B). Shaded
cells indicate missing values. Values highlighted in red indicate possible errors in data entry.
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acceptable do not exist, there are several techniques to help analysts
deal with missing values in their data set. The commonly used techni-
ques to handle missing values include deletion of the missing data,
substitution, and imputation; for additional information, please see
examples by Kang.5 Although such techniques have their merit, it is
advisable that careful consideration is given on how to prevent miss-
ing values during the data collection stage. In any case, having
attended to the above actions, a data set is created, ready for analysis.

Data Analysis

Quantitative data analysis involves the use of statistics. Statistics
will always analyze variables to help you make sense of numerical
data drawn from a sample. This is where the raw data (numbers)
become results or evidence. In most cases (if not all), data analysis
begins with devising a clear analysis plan (or statistical analysis plan
[SAP]) to ensure that statistics are aligned to the analyses required to
help address the research questions that have been set in a given
study.

Statistics have two functions. First, statistics can be descriptive.
Descriptive statistics generate summaries of the variables in a data
set to show what is typical for the sample. Second, statistics can be
inferential. Inferential statistics aid in exploring links between varia-
bles and making inferences. This means that depending on the nature
of the research, statistics can be used to show whether a new treat-
ment is effective, to investigate whether two or more variables might
be related to one another, or to reveal how similar or different two
samples might be. Importantly, inferential statistics also indicate
whether an observed effect, relationship, or difference is a chance
finding or it is likely to be true and existing in reality.

Please note that statistics never prove anything. They only help to
quantify exactly how certain or uncertain effects, relationships, simi-
larities, or differences are—although one can never be 100% sure. The
whole approach is probabilistic.2 Imagine it as the middle ground or
a gray area between black and white. One can never say for sure that
something will happen to everyone or at all times; something is only
likely or unlikely to happen; thus, there is a probability attached to it.
If the odds are high that something can happen, then there is greater
certainty (but never 100% certainty) that this may actually happen in
the real world for the majority of patients. For example, if statistics
show that one in five patients with head and neck cancer will develop
oral mucositis due to radiation to the oral cavity,6 then the typical
patient from this target population has a 20% risk to experience oral
mucositis. However, this probability may increase or decrease

depending on individual characteristics that put a person (patient) at
greater or lower risk of oral mucositis. Therefore, there is always
going to be some degree of uncertainty in any given statistic.

Descriptive Statistics

Descriptive statistics summarize the data to describe how the
sample looks like. At its simplest, this information can be reported as
frequencies (ie, total numbers and percentages). Frequencies only
apply to dichotomous and categorical variables. In published articles,
you will find frequencies given as text or displayed in tables or graphs
(Fig 3). The idea of tables and graphs is to condense the information
and present it in a way that is visually attractive and easily compre-
hensible. Importantly, tables and graphs must be self-explanatory as
stand-alone sources of information, including details in the heading,
descriptor(s), and footnote(s) to allow the reader to fully understand
the summarized data being presented.

Descriptive information can also be reported using special meas-
ures that indicate one of the following:

(a) The central position of the data. These are known as measures of
central tendency; metric variables can be analyzed this way.

(b) How spread out the data are. These are known as measures of
spread or dispersion; again, metric variables can be analyzed this
way.

(c) What the data might look like in the actual population. These are
called parameter estimation measures; they apply to all types of
variables.

Measures of Central Tendency
Measures of central tendency indicate the central position of the

data in the data set. These are helpful measures that can quickly
show you how the data tend to cluster around a middle value. The
arithmetic mean (nonscientifically known as the average) probably is
the measure that you are most familiar with. It is the sum of a set of
numbers divided by the count of numbers in the set (eg,
3 + 5 + 7 + 7 + 8 = 30 / 5 = 6). Another common measure of central ten-
dency is the median. The median is the middle in a sorted, ascending
or descending, list of numbers (eg, 3, 5, 7, 7, 8 = 7). The mode (ie, the
most frequent number in a set of data values, such as 3, 5, 7, 7, 8 = 7)
is probably the measure least commonly used today to describe met-
ric variables. However, the mode can be used to summarize

FIG 2. Modern approach to the classification of variables. Adapted from van den Berg.3
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categorical variables. The meaning of these measures becomes more
obvious when you compare two or more groups, for example, when
you compare the mean weight (or median weight) between two geri-
atric cancer groups, a prefrail and a frail one (Fig 4).

Measures of Dispersion
Knowing the central point in a data set is quite useful; however, it

can only be meaningful if you also know how spread out the data are.
This gives us an indication of how diverse the study sample is on a
particular variable. See the two data sets A and B in Fig 4; data set A
has been created with data from a prefrail geriatric cancer patient
group; data set B comes from a frail geriatric cancer patient group.
Both data sets refer to the same variable: body weight. The data sets
have the same median (70 kg) and roughly the same mean; in other
words, the center of these two distributions is practically the same.
However, the data sets are quite different in terms of how dispersed
the data are around the mean (or median). In data set A, data are
quite spread out; see how wide the line above the data is. Conversely,
in data set B, the data seem to be a lot closer together. This means
that the patients in that group (sample) were more similar or that the
sample was more homogenous. Here, we have two measures of
spread as they are called. The range is easy to calculate as it is the dis-
tance between the smallest (minimum) and the largest point (maxi-
mum) in a distribution of data. If we were to compare the two data
sets, see how data set A has a range of 60, whereas data set B has a
range of 18. This immediately gives you a basic idea about the spread
of the data.

An even better measure of spread is the standard deviation (often
reported as SD). The standard deviation is the mean (average) dis-
tance between each data point and their mean. A low standard devia-
tion indicates that the values tend to be close to the mean of the set,
whereas a high standard deviation indicates that the values are
spread out over a wider range. Again, you see in Fig 4 that with a
standard deviation of 6 (vs 25 in data set A), data set B seems to be
more homogenous as the values seem to cluster together. Knowing
the standard deviation has implications when inferential statistics
are used (more on this to follow).

Now, data in a data set can be spread in all sorts of ways. In some
cases, most data will be on the left or most on the right or in no

particular direction. In other cases, the central point may be in the
center of the distribution; this is called a normal distribution. The
normal distribution has a bell-like shape and is symmetrical, meaning
that 50% of the data will be on the left of the center and the other half
on the right. In a normal distribution, the mean and the median will
take the same value; the mean becomes the middle point of the dis-
tribution. Most variables in a population follow the normal distribu-
tion. This might not always be the case in a sample, whereby the
influence of sample size or sampling method might be translated into
inclusion of participants with only certain characteristics or experien-
ces, which can polarize the data collected. Data for some variables
may look plausibly normally distributed; however, for other variables
data may look more skewed to the right (ie, the higher data values
are fewer; positively skewed distribution) or to the left (ie, the lower
data values are fewer; negatively skewed distribution). When meas-
ures of central tendency are to be calculated, it is always a good idea
to check the distribution of the data. Where the data seem plausibly
normally distributed, either the mean or the median can be calcu-
lated to provide similar information. Where the data are skewed to

FIG 3. Example table providing a detailed overview of the sample’s demographic and clinical characteristics, using descriptive statistics. Adapted from Kotronoulas et al.7

FIG 4. Example of measures of central tendency and dispersion related to two inde-
pendent data sets (A and B) that relate to the same variable (weight).
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the right or the left, then the median is a better option. This is because
the mean is easily influenced by too small or too large values in the
data set and, as such, can provide an artificially inflated or deflated
summary of the variable under consideration. Conversely, the median
is unaffected by extreme values.

A data distribution also gives an idea of where, percentage wise, a
certain value falls by making use of the standard deviation. There is
an empirical rule associated to the normal distribution that can help
you better understand this. In a normal distribution, you can expect
that 68% of all values will fall within 1 standard deviation to the left
or to the right of the center; 95% of the values will fall within two
standard deviations, while almost all values will fall within three
standard deviations (98%). Let us examine a practical example in
Fig 5. Pakravan et al8 tested the use of a triamcinolone patch com-
pared to placebo as an intervention to treat oral mucositis induced by
radiotherapy for patients with head-and-neck cancer. Fig 5 shows
descriptive statistics for the two groups. Please note how variables
like sex, smoking, and status of denture are summarized using total
numbers and percentages. Age is presented as the mean and standard
deviation. See how patients in the triamcinolone group were on aver-
age older than the control (58.5 vs 56.5 years). The standard devia-
tions were comparable (8.9 vs 9.4), perhaps the control group was
just a bit more heterogenous as the slightly higher standard deviation
implies. Knowing the standard deviation, you also know that 68% of
the data about age will fall within one standard deviation on the left
or right of the mean, or for example, that 68% of data in the triamcin-
olone group will be between roughly 49.6 and 67.4 years of age.

Pakravan et al8 also measured patients’ pain on a 0-10 numerical
scale, and they did so at baseline, the week before the trial started
(that is week 0), and after the treatment was given for 4 consecutive
weeks. They have provided descriptive statistics in the form of means
and standard deviations for each weekly measurement and each
group (see Fig 5). All these numbers may be hard to grasp. This is
why the article also includes a helpful graph where you can see the
change in mean scores over time. The blue line is the treatment
group. Each time point is the mean pain score. Patients in the treat-
ment group seem to report lower scores on average compared with

the control group; see the steep decline to the blue line over time. In
addition, at each point you see a vertical line, which indicates the
standard deviation (ie, the spread of the data around the mean). See
how the vertical lines change in length; this is because standard devi-
ation changes at each independent measurement over time. From the
graph, you can quickly tell that pain scores for the control group
where much closer together (the lines are shorter, meaning that the
spread was lower), whereas for the intervention group the lines are
longer because the standard deviations were higher and the data
more spread out, meaning that the intervention sample was less
homogenous. In our example, this reduced homogeneity means that
the reported pain scores were quite variable after the intervention
was given to the study participants.

Parameter Estimation Measures (Confidence Intervals)
A confidence interval (CI) simply is a way to measure how well a

sample represents the wider population that is being studied. This is
important in evidence-based practice. Clinicians need to have an esti-
mate of a population parameter that comes from investigating just
one sample from this same population. Clinicians also need to know
how accurate this estimate is; in other words, how likely the sample
is to accurately reflect the wider population. Suppose that the param-
eter of interest is the arithmetic mean of posttreatment survival gain
in months in the wider population of patients with cancer. A sample
of patients with cancer is studied, and the mean survival gain comes
back as 2.5 months. What is our confidence that this value (which
comes from just one sample) accurately reflects mean survival gain
in the wider cancer patient population?

The mean survival gain in the wider cancer patient population is
unknown; however, the mean from the sample can help you make
an estimation. This is the function of calculating a confidence
interval.9,10 The confidence interval is a range of values. This range
indicates how likely it is for the values to include the true value of a
population parameter (such as the arithmetic mean) with a certain
degree of confidence.2 A confidence interval is often expressed as a
percentage. The 95% confidence interval is most commonly reported
in published articles. In our example, the 95% confidence interval can

FIG 5. Measures of central tendency and dispersion reported in a published article. Adapted from Pakravan et al.8
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be calculated as -0.01 to 5.01 months.7 In the hypothetical scenario
that we were to run 100 independent, identical studies involving 100
different cancer patient samples and computed a 95% confidence
interval for each sample, then exactly 95 of the 100 confidence inter-
vals would contain the true mean survival gain, and exactly 5 of the
100 confidence intervals would not.11

Consider another practical example here. If a researcher studied
weight management in 100 frail geriatric patients with cancer, they
might have found that the sample had a mean weight of 73 kg with a
standard deviation of 17. Clinicians would ask: How confident can
we be that this mean weight reflects the wider population of frail
geriatric patients with cancer? A 95% confidence interval can be cal-
culated to show that if, in the hypothetical case that 100 similar sam-
ples of geriatric patients with cancer were investigated and 100
confidence intervals were computed, then 95 of them would contain
the true population mean weight and that would be between 69.7
and 76.3 kg. Many journals today require researchers to report confi-
dence intervals to increase the meaningfulness of the information for
clinicians.

Inferential Statistics

This branch of statistics aims to test hypotheses to return a proba-
bility about whether or not a hypothesized effect, relationship, or
difference is likely true. In inferential statistics, you have two hypoth-
eses.12 The null hypothesis (H0) states that there is no effect, relation-
ship, or difference. For instance, the null hypothesis might state that
severe pain IS NOT related to frequent nighttime awakenings in
patients with advanced cancer. The alternative hypothesis (H1) states
the exact opposite; this is actually what the researchers are after,
concrete evidence to allow them to say that severe pain IS linked (ie,
increases the possibility) for patients with advanced cancer to spend
long hours awake at night.

The null hypothesis can either be true or false. In effect, the goal is
to reject the null hypothesis when the null is false because this sup-
ports the alternative hypothesis as being true. In that sense, hypothe-
sis testing involves making decisions about when to reject or not
reject the null hypothesis. The only way to know this is through ana-
lyzing data from a sample via use of inferential statistics.12

Researchers always want to be able to correctly decide to reject a
null hypothesis when it is actually false. Similarly, they want to cor-
rectly decide to not reject a null hypothesis when it is true (Fig 6). Of
course, this is not always easy. Therefore, researchers set criteria
about how confident they wish to be in their decision-making. These
criteria come in the form of probabilities. Usually, researchers only

allow 20% or less chance for them to fail to reject a null hypothesis
that is false, for instance, to fail to reject a null hypothesis that says
that a new treatment does not work when it actually works. This
probability is called beta or Type II error. The opposite (ie, 1 - beta) is
usually called the statistical power of the study, and it is set at 80% or
above (100% - 20% = 80%). Also, researchers usually only allow 5% or
less chance to reject a null hypothesis that is true (ie, to say that a
treatment works although in reality the treatment is ineffective). This
probability is called Type I error or alpha or the significance level
alpha.

To decide whether to reject or not reject a null hypothesis,
researchers use statistical tests. The test takes into account the distri-
bution of the data and the type of variables (eg, metric) involved in
the hypothesis. The test uses the numbers attached to the variables
to produce a value for the probability that the null hypothesis is true.
There are many statistical tests; the basic ones are:

! Chi-square " compares two dichotomous variables.
! Pearson’s r coefficient " shows how two metric variables corre-
late linearly.

! Student’s t test " compares the means between two independent
groups on a metric variable.

! Analysis of variance " compares the means of three or more inde-
pendent groups.

! Regression analysis " shows the effects of one variable on another
variable when every third variable stays the same.

Shreffler and Huecker13 offer a nice overview of statistical tests as
they apply to research questions and variables.

For statistical tests to be used appropriately for data analysis, the
data must meet certain assumptions. For example, continuous data
on a metric variable must be normally distributed for a Student’s t
test to be conducted. Tests that assume that the data from the sample
are normally distributed are called parametric. In fact, assessing the
normality of data in metric variables is a prerequisite for many statis-
tical tests and, therefore, should be actioned early on to allow for
selection of the most appropriate test. Data in metric variables can be
assessed for normality either visually (eg, by examining their distri-
bution on a histogram) or statistically.14 If the data do not meet this
assumption, it is necessary to consider alternatives. This is usually a
decision between two options:

a. Keep the variable unchanged and use an equivalent, nonparamet-
ric test. Nonparametric tests are also known as distribution free
tests exactly because they do not assume anything about how the

FIG 6. Criteria for decision-making in hypothesis testing.
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data may be distributed. In this example, the equivalent to a Stu-
dent’s t test would be the Mann-Whitney test.

b. Convert the metric variable into a categorical variable to meet the
assumptions of a test that is suitable for categorical variables (eg,
the Chi-square test). For instance, age (metric variable) could be
converted into age groups (categorical variable). Alternatively, a
questionnaire score for quality of life could be converted to a high
and low score.

Deciding how to categorize data for abstract metric variables such
as quality of life may be difficult because no specific benchmarks
exist. A decision may be to use a standardized grouping with equal
scores for each group. Consider total scores on the Functional Assess-
ment for Cancer Therapy-Colorectal (FACT-C); this is a questionnaire
that measures quality of life in patients with colorectal cancer. Total
FACT-C scores with a possible range of 0-136 may be arbitrarily bro-
ken down to low (0-45), moderate (46-90), and high (91-136) quality
of life. As such, nominal categorical variable is created from an origi-
nal metric one. However, it is possible that some groups (eg, low)
might end up having too few participants to allow chi-square analy-
sis; adequate numbers within each subgroup is one of the assump-
tions of chi-square tests. An alternative approach may be to
dichotomize the original FACT-C variable, so that half the sample fall
into a “higher” and half into a “lower” quality of life group. If taking
this approach, the median score for the sample would act as the
benchmark to decide on group membership.15

The P Value in Hypothesis Testing
Inferential statistical tests produce a value for probability. What

researchers are interested in is how high or low the chances are (or
probability) that the null hypothesis is true. Consider our previous
example on severe pain increasing the chances for frequent night-
time awakenings among patients with advanced cancer. If the chan-
ces or probability are low, then researchers can decide to reject the
null hypothesis. If the chances or probability are high, then research-
ers will have to stop there; the null hypothesis cannot be rejected.

The probability of the null hypothesis being true has a name; it is
called the P value, and it ranges from 0 to 1. A P value of 0.67 shows
67% probability (0.67£ 100 = 67%) that the null hypothesis is true,
whereas a P value of <.002 shows <0.2% probability
(<0.002£ 100 =<0.2%) that the null is true. The exact question that
the P value answers is this: If the null hypothesis was indeed true,
how likely would it be to observe an effect, relationship, or difference
as extreme as the one observed here?

The smaller the P value, the smaller the chances are that the null
hypothesis is true. Equally, the greater the chances are that the alter-
native hypothesis is true, and as such, the higher the statistical signif-
icance of the observed result. If the probability is low or very low, for
example, the P value is <0.002 (or <0.2% probability), then this
means that the null hypothesis does not seem to explain the situation

well. As such, the alternative hypothesis seems more plausible. You
might ask: Can I now go right ahead and reject the null hypothesis?

No hypothesis test is 100% certain. Because the test is based on
probabilities, there is always a chance of making an incorrect deci-
sion. When researchers run a hypothesis test, they are likely to make
either of the two types of errors discussed previously: type I or type II
error (Fig 6). The probability of making a type I error is alpha (ie, to
reject a null hypothesis that is true). This is the level of significance
researchers set for their hypothesis testing. An alpha of 0.05 indicates
that they are willing to accept a 5% chance that they are wrong when
they reject the null hypothesis when the null hypothesis is actually
true. What researchers do in practice is they compare the P value
derived from their tests against the alpha. A P value that is below
alpha (eg, below 0.05) shows low probability that a null hypothesis is
true; therefore, it can be rejected. This also implies a statistically sig-
nificant result, which practically means that a hypothesized effect,
relationship, or difference is likely true; in other words, there is evi-
dence it really exists.

Let us go back to our example trial from Pakravan et al8 in Fig 5.
See how the researchers tested for differences between the two
groups in terms of age, sex, smoking, and so on. The null hypothesis
for all these tests was: “there is no difference between the two
groups.” The researchers set the significance level alpha to 0.05,
meaning that all P values below alpha would point toward rejecting
the null hypothesis, thus implying that the two groups were indeed
different. What you see here is that no P value was below the alpha
level; the null hypothesis cannot be rejected. The two groups seem to
be roughly similar in respect to all of these characteristics. The
researchers did the same when they compared pain scores between
the two groups at the different time points (see Fig 5). At weeks 0 to
2, the groups were roughly similar in terms of pain scores; no P value
below 0.05. But see what happens at weeks 3 and 4; P values are way
below 0.05. If you look at the mean pain scores, you can see a differ-
ence of about 2 points on average. The P value suggests that there is
very low chance for this difference to exist if the null hypothesis was
indeed true. As a result, the null hypothesis does not seem to explain
the difference very well. The two groups seem to be quite different in
terms of pain scores at weeks 3 and 4 (that is quite the opposite of
what the null hypothesis suggested). Indeed, the treatment seems to
begin to have an effect on patients’ perceived pain at weeks 3 and 4.

Confidence Intervals in Hypothesis Testing
Apart from P values, confidence intervals can also be used in

hypothesis testing. For instance, confidence intervals can be calcu-
lated for the difference between the mean scores of two groups. The
confidence interval provides information about whether the differ-
ence was statistically significant, while it also gives an estimate of the
true difference in the wider population. Table 1 provides data from a
trial that tested a 12-week resistance training intervention developed
for patients on adjuvant radiotherapy for breast cancer.16 The mean

TABLE 1
Confidence Intervals in Hypothesis Testing.*

Arm (N) Mean (SD) Adjustedy mean change (95% CI) Adjustedy between group
difference (95% CI)

P value Effect size d

Before intervention After intervention

Total fatigueǂ Exercise (77) 5.9 (2.2) 5.4 (2.3) -0.5 (-0.9 to -0.2) -0.5 (-1.0 to -0.0) .044x 0.25
Relaxation (78) 6.0 (2.0) 5.9 (1.9) -0.0 (-0.4 to 0.3)

Global quality of lifek Exercise (76) 59 (21) 64 (25) 4.6 (0.1 to 9.2) 3.0 (-3.5 to 9.5) 0.37 0.15
Relaxation (72) 61 (20) 62 (21) 1.6 (-3.1 to 6.3)

CI, confidence interval; N, sample size; SD, standard deviation.
* Adapted from Steindorf et al.14
y Regression models are adjusted for baseline value.
ǂ Fatigue Assessment Questionnaire. Fatigue scores square-root transformed, i.e. they are on a 0-10 scale. Higher scores indicating worse fatigue.
x Indicates statistical significance at alpha 0.05.
k European Organisation for Research and Treatment of Cancer (EORTC QLQ-C30), version 3.0. Scores are on a 0-100 scale. Higher scores indicate better quality of life.
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difference in scores before and after the intervention was calculated
for two variables in this sample. A 95% confidence interval gives an
estimate of true differences in the wider population. From a clinical
perspective, we know that, for the variable total fatigue 95 of 100
hypothetical confidence intervals would contain the true difference,
and this would lie somewhere between -1.0 and -0.0 (note this value
is close to 0 but not 0). Because we are talking about differences in
means, a difference in means with an exact value of 0 should be inter-
preted as no difference whatsoever between the two groups. Note
how for the variable global quality of life, the 95% confidence interval
goes from -3.5 to 9.5. This means that a 0 value is included here; you
can expect that this result is not statistically significant. The P value
of 0.37 that is attached to this test shows that at alpha 0.05, the result
is not significant. The clinician understands that there is no clarity
regarding a difference between the two groups in relation to this var-
iable. If 100 groups were sampled, then in some cases the exercise
group would do better; in other cases, the relaxation group would do
better, and yet in other cases, there would be no difference at all.
Therefore, the evidence is not really convincing about any effects on
global quality of life.

Data Interpretation

With data analysis completed, the most interesting and rewarding
part (and at the same time most difficult) is the art of interpretation
of the emerging evidence. Evidence without interpretation is the
exact same thing as raw data without analysis; they are of no use to
anyone. When you read papers, you want the authors to have written
an intriguing and thought-provoking discussion of their results that
motivates the reader to think more broadly about the importance of
the evidence and its potential uses.

One key thing to remember is that, although statistics test
hypotheses to indicate that an effect, relationship, or difference is
real (and not due only to chance), statistically significant results may
not always be clinically important. Statistical significance usually is a
function of the sample size. The larger the sample, the easier it is to
show a statistically significant result even though the result might
not have any real meaning for use in practice.

Effect Sizes in Data Interpretation

Jacob Cohen, one of the most influential statisticians of the 20th
century, wrote in 1990 that “the primary product of a research
inquiry is one or more measures of effect size, not p-values.”17

Indeed, P values are a good introduction to the world of inferential
statistics. However, results of inferential statistical tests should be
described in terms of measures of magnitude, i.e. not just whether or
not a treatment benefits patients but how much it benefits them (if
at all).18 P values will inform us about whether an effect, relationship,
or difference might exist in reality. Measures of magnitude will tell
us how small or large this effect, relationship, or difference is; this
information can be clinically useful for decision-making.

Measures of magnitude come in the form of effect sizes.19 Effect
sizes can be calculated for any type of association or comparison and,
therefore, may refer to differences in mean scores, differences in
odds, or the size of correlation between variables. Effect sizes can be
absolute when the variable under investigation has intrinsic mean-
ing. Consider this example. Cognitive-behavioral therapy for insom-
nia (CBT-I) is tested as part of a pilot trial to see whether it is related
to gains in total sleep time at night (number of hours) in patients
with cancer.20 The results show a statistically significant difference
on total sleep time between the intervention group (CBT-I) and con-
trol group (usual care); let us say the P value is 0.02. The variable total
sleep time has intrinsic meaning (ie, number of hours). An absolute
effect size can be calculated for the difference in total sleep time
between intervention and control group; let us say the effect size is

1.6 hours. On average, the intervention group gained 1.6 hours of
extra sleep time after CBT-I compared to the control group (eg, mean
total sleep time of 6.8 hours for the intervention group " mean total
sleep time of 5.2 hours for the control group = 1.6 hours). This abso-
lute effect size can communicate important information to clinicians
and patients, and it has concrete meaning: an average of 1.6 hours
can easily be considered for its clinical importance.

Imagine also that patients in both groups were asked to self-
assess their sleep quality on a 0-10 visual analogue scale. An absolute
effect size could be calculated to show an average improvement of
2.3 points on the scale in favor of the intervention group. Although
this is good information, we are unsure whether a 2.3 change is large
enough or trivial. The variable has no intrinsic meaning, or it can be
difficult to express how much change is clinically important. A stan-
dardized effect size can be calculated to take into account variability
in the measured improvement. In other words, a standardized effect
size also looks at the standard deviation (variability) of the data in
the variable and not just the absolute size of the difference. The larger
the variability, the smaller the standardized effect size because the
direction of the effect becomes diluted. Standardized effect sizes are
unitless; this makes it easier to compare effect sizes that come from
different studies or where different measures were used to measure
the same variable.

Cohen’s d probably is the standardized effect size we are most
familiar with.21 Standardized effect sizes are interpreted against set
benchmarks or rules of thumb. For instance, Cohen21 classified effect
sizes as small (d = 0.2-0.49), medium (d = 0.5-0.79), and large (d !
0.8). Suppose that in our example above the standardized effect size
is calculated as 0.39; this points to the direction of a small (although
not too small) effect size of CBT-I on sleep quality. Similarly, in
Table 1,16 a P value of 0.044 indicates a statistically significant differ-
ence between exercise (intervention group) and relaxation (control
group); that is, a true difference might exist in reality between the
two groups. However, an effect size of d = 0.25 implies only a small
size of the effect of exercise training on patients’ total fatigue; in
other words, from a clinical perspective, the effect might not be as
important.

Critical Thinking in Data Interpretation

Let us consider another example (Table 2). Suppose you have
three independent, fictitious trials that test a new medication against
what currently is standard practice for the treatment of prostate can-
cer. The first trial has a sample size of 10,000 patients and concludes
with a statistically significant effect of the new medication, whereby
the new medication reduces prostate-specific antigen (PSA) levels by
0.5% on average; this is the absolute effect size. Statistical significance
is confirmed with an extremely low P value. However, a reduction of
0.5% is negligent to justify approval of the new medication for use in
clinical practice, particularly when side effects and costs are also
taken into account. Because of the very large sample size, the
researchers were still able to show statistical significance of a rather
minimal effect.

The second trial involves only 10 patients. Results show that the
new medication is associated to a 30% reduction in PSA levels, a quite
large effect size. However, the result is not statistically significant
despite being obviously clinically important. The small sample size
does not allow researchers to show statistical evidence that this is
not a chance finding. As such, the new medication possibly will not
be used in clinical practice unless more and larger trials are done to
replicate this same finding. Finally, the third trial shows an average
20% reduction in PSA levels, which is both clinically important and
statistically significant. Can this result lead to the new medication
being approved for use in clinical practice? Probably yes, particularly
if similar studies produce similar results.
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Conclusion

Data processing in quantitative research involves the combination
of careful data management techniques, knowledge of statistics, and
critical thinking skills to aid interpretation. Developing capacity in
the management, analysis, and interpretation of quantitative
research data can have a multifaceted impact in enhancing nurses’
confidence in understanding, evaluating, and applying quantitative
evidence in cancer nursing practice. Throughout this article, we have
described using practical examples, the stages of quantitative data
processing. We have also looked to clarify some concepts to support
both students and researchers.

Having considered several important aspects in this article, sev-
eral functions can be considered as advantages in the processing of
quantitative research data. Statistics can deal with large numbers of
data, variables, and samples. They can quantify the effect of a new
treatment, service, or intervention. They can also explore relation-
ships between two variables while controlling for third ones. Statis-
tics can help summarize characteristics of the sample for possible
generalization to the wider population. Using statistics, the analysis
can be replicated using the same data set. Personal bias is avoided via
careful data management and critical thinking to help researchers
keep a distance from the data, while casting a critical eye on them.

Processing quantitative research data is not without its chal-
lenges. Data management can be time-consuming and requires skill-
ful analysts. The quality of the results depends on the quality of the
data. Several points could be made about the effects of missing data
or imputation techniques, about data derived from less well validated
measures, or indeed appropriate for the research. While statistics
produce results to prompt consideration for clinical practice or future
research, some results can be difficult to interpret or explain and, as
such, difficult to apply to the real world. Errors in statistical analyses
may return incorrect results and misleading conclusions. Statistical
significance does not always translate into clinical importance, and
overreliance to statistical significance might overlook potentially
important hints toward important discoveries.
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TABLE 2
Hypothetical Scenarios Showcasing Statistical Significance Versus Clinical Importance.

Newmedication tested against
standard treatment

Tested in P value Statistical significance
(ie, <0.05)?

Clinical importance? Possible use in practice?

Trial 1 Reduces PSA levels by 0.5% on
average

10,000 patients .00003 Yes No (small effect size) Uncertain but probably not. Do
the side effects and cost justify
the use?

Trial 2 Reduces PSA levels by 30% on
average

10 patients .74 No Yes (large effect size) Uncertain but possibly not. Can it
help many people? More
research is required.

Trial 3 Reduces PSA levels by 20% on
average

200 patients .004 Yes Yes (moderate effect size) Probably yes, particularly if these
effects are replicated in similar
studies.

PSA, prostate-specific antigen.
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